An Acid-tolerant Iron-oxidizing Metallogenium
نویسندگان
چکیده
منابع مشابه
The iron-oxidizing proteobacteria.
The 'iron bacteria' are a collection of morphologically and phylogenetically heterogeneous prokaryotes. They include some of the first micro-organisms to be observed and described, and continue to be the subject of a considerable body of fundamental and applied microbiological research. While species of iron-oxidizing bacteria can be found in many different phyla, most are affiliated with the P...
متن کاملAn archaeal iron-oxidizing extreme acidophile important in acid mine drainage.
A new species of Archaea grows at pH approximately 0.5 and approximately 40 degrees C in slime streamers and attached to pyrite surfaces at a sulfide ore body, Iron Mountain, California. This iron-oxidizing Archaeon is capable of growth at pH 0. This species represents a dominant prokaryote in the environment studied (slimes and sediments) and constituted up to 85% of the microbial community wh...
متن کاملIsolation and Properties of an Iron-oxidizing Thiobacillus.
Razzell, W. E. (British Columbia Research Council, Vancouver, Canada) and P. C. Trussell. Isolation and properties of an iron-oxidizing Thiobacillus. J. Bacteriol. 85:595-603. 1963. - An organism isolated from acidic copper-leaching waters has been shown to oxidize ferrous ions, sulfur, and metallic sulfides but exhibit peculiar responses to thiosulfate. The name Thiobacillus ferrooxidans has b...
متن کاملFacultative Iron-Oxidizing Bacterium, Thiobacillus ferrooxidans
Properties ofa heat-labile glucose transport system in Thiobacillusferrooxidans strain AP-44 were investigated with iron-grown cells. [14C]glucose was incorporated into ceil fractions, and the cells metabolized [14C]glucose to 14CO2. Amytal, rotenone, cyanide, azide, 2,4-dinitrophenol, and dicyclohexylcarbodiimide strongly inhibited [14C]glucose uptake activity, suggesting the presence of an en...
متن کاملGrowth kinetics of attached iron-oxidizing bacteria.
A model of growth and substrate utilization for ferrous-iron-oxidizing bacteria attached to the disks of a rotating biological contactor was developed and tested. The model describes attached bacterial growth as a saturation function in which the rate of substrate utilization is determined by a maximum substrate oxidation rate constant (P), a half-saturation constant (K(s)), and the concentrati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of General Microbiology
سال: 1972
ISSN: 0022-1287
DOI: 10.1099/00221287-72-2-369